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CONTENT AREA: Mathematics 

GRADE LEVEL: Grade 10/High School (HS) 

Standard Descriptions: 

The high school standards specify the mathematics that all students should study in order to be college and career ready. 
Additional mathematics that students should learn in order to take advanced courses such as calculus, advanced 
statistics, or discrete mathematics is indicated by (+), as in this example: (+) Represent complex numbers on the complex 
plane in rectangular and polar form (including real and imaginary numbers). All standards without a (+) symbol should be 
in the common mathematics curriculum for all college and career ready students. Standards with a (+) symbol may also 
appear in courses intended for all students. The high school standards are listed in conceptual categories: 
 
• Number and Quantity 
• Algebra 
• Functions 
• Modeling 
• Geometry 
• Statistics and Probability 
 
Conceptual categories portray a coherent view of high school mathematics; a student’s work with functions, for example, 
crosses a number of traditional course boundaries, potentially up through and including calculus. Modeling is best 
interpreted not as a collection of isolated topics but in relation to other standards.  
 

Number and Quantity 
 
Numbers and Number Systems 
During the years from kindergarten to eighth grade, students must repeatedly extend their conception of number. At first, 
“number” means “counting number”: 1, 2, 3... Soon after that,0 is used to represent “none” and the whole numbers are 
formed by counting numbers together with zero. The next extension is fractions. At first, fractions are barely numbers and 
tied strongly to pictorial representations. Yet by the time students understand division of fractions, they have a strong 
concept of fractions as numbers and have connected them, via their decimal representations, with the base-ten system 
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used to represent the whole numbers. During middle school, fractions are augmented by negative fractions to form the 
rational numbers. In Grade 8, students extend this system once more, augmenting the rational numbers with the irrational 
numbers to form the real numbers. In high school, students will be exposed to yet another extension of number, when the 
real numbers are augmented by the imaginary numbers to form the complex numbers. 
 
With each extension of number, the meanings of addition, subtraction, multiplication, and division are extended. In each 
new number system—integers, rational numbers, real numbers, and complex numbers—the four operations stay the 
same in two important ways: They have the commutative, associative, and distributive properties and their new meanings 
are consistent with their previous meanings. Extending the properties of whole-number exponents leads to new and 
productive notation. For example, properties of whole-number exponents suggest that (5 1/3)3 should be 5 (1/3)3 = 51 = 5 
and that 5 1/3 should be the cube root of 5. Calculators, spreadsheets, and computer algebra systems can provide ways 
for students to become better acquainted with these new number systems and their notation. They can be used to 
generate data for numerical experiments, to help understand the workings of matrix, vector, and complex number algebra, 
and to experiment with non-integer exponents. 
 
Quantities 
 In real world problems, the answers are usually not numbers but quantities: numbers with units, which involves 
measurement. In their work in measurement up through Grade 8, students primarily measure commonly used attributes 
such as length, area and volume. In high school, students encounter a wider variety of units in modeling, e.g., 
acceleration, currency conversions, derived quantities such as person-hours and heating degree days, social science 
rates such as per-capita income, and rates in everyday life such as points scored per game or batting averages. They 
also encounter novel situations in which they themselves must conceive the attributes of interest. For example, to find a 
good measure of overall highway safety, they might propose measures such as fatalities per year, fatalities per year per 
driver, or fatalities per vehicle-mile traveled. Such a conceptual process is sometimes called quantification. Quantification 
is important for science, as when surface area suddenly “stands out” as an important variable in evaporation. 
Quantification is also important for companies, which must conceptualize relevant attributes and create or choose suitable 
measures for them. 
 
 
Blue: Standards 1 through 3 (TEST WINDOW 1) 
Yellow: Standards 4 through 6 (TEST WINDOW 2) 
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The Real Number System (RNR) Extend the properties of exponents to rational exponents. 

 Use properties of rational and irrational numbers. 

  

Quantities (NQ) Reason quantitatively and use units to solve problems. 

  

The Complex Number System (NCN) Perform arithmetic operations with complex numbers. 

 Represent complex numbers and their operations on the 
complex plane. 

 Use complex numbers in polynomial identities and 
equations. 

  

Vector and Matrix Quantities (NVM) Represent and model with vector quantities. 

 Perform operations on vectors. 

 Perform operations on matrices and use matrices in 
applications. 
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Algebra 

Expressions 
An expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, 
exponentiation, and, at more advanced levels, the operation of evaluating a function. Conventions about the use of 
parentheses and the order of operations assure that each expression is unambiguous. Creating an expression that 
describes a computation involving a general quantity requires the ability to express the computation in general terms, 
abstracting from specific instances. Reading an expression with comprehension involves analysis of its underlying 
structure. This may suggest a different but equivalent way of writing the expression that exhibits some different aspect of 
its meaning. For example, p + 0.05p can be interpreted as the addition of a 5% tax to a price p. Rewriting p + 0.05p as 
1.05p shows that adding a tax is the same as multiplying the price by a constant factor. Algebraic manipulations are 
governed by the properties of operations and exponents, and the conventions of algebraic notation. At times, an 
expression is the result of applying operations to simpler expressions. For example, p + 0.05p is the sum of the simpler 
expressions p and 0.05p. Viewing an expression as the result of operation on simpler expressions can sometimes clarify 
its underlying structure. A spreadsheet or a computer algebra system (CAS) can be used to experiment with algebraic 
expressions, perform complicated algebraic manipulations, and understand how algebraic manipulations behave. 
 

Equations and Inequalities 
An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the 
variables the expressions on either side are in fact equal. These values are the solutions to the equation. An identity, in 
contrast, is true for all values of the variables; identities are often developed by rewriting an expression in an equivalent 
form. The solutions of an equation in one variable form a set of numbers; the solutions of an equation in two variables 
form a set of ordered pairs of numbers, which can be plotted in the coordinate plane. Two or more equations and/or 
inequalities form a system. A solution for such a system must satisfy every equation and inequality in the system. An 
equation can often be solved by successively deducing from it one or more simpler equations. For example, one can add 
the same constant to both sides without changing the solutions, but squaring both sides might lead to extraneous 
solutions. Strategic competence in solving includes looking ahead for productive manipulations and anticipating the nature 
and number of solutions. Some equations have no solutions in a given number system, but have a solution in a larger 
system. For example, the solution of x + 1 = 0 is an integer, not a whole number; the solution of 2x + 1 = 0 is a rational 
number, not an integer; the solutions of x2 – 2 = 0 are real numbers, not rational numbers; and the solutions of x2 + 2 = 0 
are complex numbers, not real numbers. The same solution techniques used to solve equations can be used to rearrange 
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formulas. For example, the formula for the area of a trapezoid, A = ((b1+b2)/2)h, can be solved for h using the same 
deductive process. Inequalities can be solved by reasoning about the properties of inequality. Many, but not all, of the 
properties of equality continue to hold for inequalities and can be useful in solving them. 
 
Connections to Functions and Modeling 
Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have 
the same value for the same input leads to an equation; graphing the two functions allows for finding approximate 
solutions of the equation. Converting a verbal description to an equation, inequality, or system of these is an essential skill 
in modeling. 
 

Seeing Structure in Expressions (ASSE) Interpret the structure of expressions 

 Write expressions in equivalent forms to solve problems 

  

Arithmetic with Polynomials and Rational 
Expressions (AAPR) 

Perform arithmetic operations on polynomials 

 Understand the relationship between zeros and factors of 
polynomials 

 Use polynomial identities to solve problems 

 Rewrite rational expressions 

  

Creating Equations (ACED) Create equations that describe numbers or relationships 
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Reasoning with Equations and Inequalities 

(AREI) 

Understand solving equations as a process of reasoning 
and explain the reasoning 

 Solve equations and inequalities in one variable 

 Solve systems of equations 

 Represent and solve equations and inequalities graphically 

 
 

Functions 

Functions describe situations where one quantity determines another. For example, the return on $10,000 invested at an 
annualized percentage rate of 4.25% is a function of the length of time the money is invested. Because we continually 
make theories about dependencies between quantities in nature and society, functions are important tools in the 
construction of mathematical models. In school mathematics, functions usually have numerical inputs and outputs and are 
often defined by an algebraic expression. For example, the time in hours it takes for a car to drive 100 miles is a function 
of the car’s speed in miles per hour, v; the rule T(v) = 100/v expresses this relationship algebraically and defines a 
function whose name is T. The set of inputs to a function is called its domain. We often infer the domain to be all inputs for 
which the expression defining a function has a value, or for which the function makes sense in a given context. A function 
can be described in various ways, such as by a graph (e.g., the trace of a seismograph); by a verbal rule, as in, “I’ll give 
you a state, you give me the capital city;” by an algebraic expression like f(x) = a + bx; or by a recursive rule. The graph of 
a function is often a useful way of visualizing the relationship of the function models, and manipulating a mathematical 
expression for a function can throw light on the function’s properties. Functions presented as expressions can model 
many important phenomena. Two important families of functions characterized by laws of growth are linear functions, 
which grow at a constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a 
constant term of zero describe proportional relationships. A graphing utility or a computer algebra system can be used to 
experiment with properties of these functions and their graphs and to build computational models of functions, including 
recursively defined functions. 
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Connections to Expressions, Equations, Modeling, and Coordinates 

Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given 

output involves solving an equation. Questions about when two functions have the same value for the same input lead to 

equations, whose solutions can be visualized from the intersection of their graphs. Because functions describe 

relationships between quantities, they are frequently used in modeling. Sometimes functions are defined by a recursive 

process, which can be displayed effectively using a spreadsheet or other technology. 

 
 

Interpreting Functions (FIF) Understand the concept of a function and use function 
notation 

 Interpret functions that arise in applications in terms of the 
context 

 Analyze functions using different representations 

  

Building Functions (FBF) Build a function that models a relationship between two 
quantities 

 Build new functions from existing functions 

  

Linear, Quadratic, and Exponential Models 

(FLE) 

Construct and compare linear, quadratic and exponential 
models and solve problems 

 Interpret expressions for functions in terms of the situation 
they model 
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Trigonometric Functions (FTF) Extend the domain of trigonometric functions using the unit 
circle 

 Model periodic phenomena with trigonometric functions 

 Prove and apply trigonometric identities 

 
 

Modeling 

Modeling links classroom mathematics and statistics to everyday life, work and decision-making. Modeling is the process 
of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, 
and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday 
situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is 
valuable for varying assumptions, exploring consequences, and comparing predictions with data. A model can be very 
simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a 
physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a 
three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—
modeling a delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models 
that use other tools from the mathematical sciences. Real-world situations are not organized and labeled for analysis; 
formulating tractable models, representing such models, and analyzing them is appropriately a creative process. Like 
every such process, this depends on acquired expertise as well as creativity. Some examples of such situations might 
include: 
• Estimating how much water and food is needed for emergency relief in a devastated city of 3 million people, and how it 
might be distributed. 
• Planning a table tennis tournament for 7 players at a club with 4 tables, where each player plays against each other 
player. 
• Designing the layout of the stalls in a school fair so as to raise as much money as possible. 
• Analyzing stopping distance for a car. 
• Modeling savings account balance, bacterial colony growth, or investment growth. 
• Engaging in critical path analysis, e.g., applied to turnaround of an aircraft at an airport. 
• Analyzing risk in situations such as extreme sports, pandemics, and terrorism. 
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• Relating population statistics to individual predictions. In situations like these, the models devised depend on a number 
of factors: How precise an answer do we want or need? What aspects of the situation do we most need to understand, 
control, or optimize? What resources of time and tools do we have? The range of models that we can create and analyze 
is   so constrained by the limitations of our mathematical, statistical, and technical skills, and our ability to recognize 
significant variables and relationships among them. Diagrams of various kinds, spreadsheets and other technology, and 
algebra are powerful tools for understanding and solving problems drawn from different types of real-world situations. 
 
One of the insights provided by mathematical modeling is that essentially the same mathematical or statistical structure 
can sometimes model seemingly different situations. Models can also shed light on the mathematical structures 
themselves, for example, as when a model of bacterial growth makes more vivid the explosive growth of the exponential 
function. 
 
 

 
 

The basic modeling cycle is summarized in the diagram. It involves (1) identifying variables in the situation and selecting 
those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, 
algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing 
operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the 
original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model 
or, if it Common Core State Standards for MATHEMATICS high school — modeling | 73 is acceptable, (6) reporting on 
the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this 
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cycle. In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs 
of observations are a familiar descriptive model— for example, graphs of global temperature and atmospheric CO2 over 
time. Analytic modeling seeks to explain data on the basis of deeper theoretical ideas, albeit with parameters that are 
empirically based; for example, exponential growth of bacterial colonies (until cut-off mechanisms such as pollution or 
starvation intervene) follows from a constant reproduction rate. Functions are an important tool for analyzing such 
problems. 
Graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry software are powerful tools that can 
be used to model purely mathematical phenomena (e.g., the behavior of polynomials) as well as physical phenomena. 
 
Modeling Standards  
Modeling is best interpreted not as a collection of isolated topics but rather in relation to other standards. 
 

 

Geometry 

An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts—interpreting 
a schematic drawing, estimating the amount of wood needed to frame a sloping roof, rendering computer graphics, or 
designing a sewing pattern for the most efficient use of material.  
 
Although there are many types of geometry, school mathematics is devoted primarily to plane Euclidean geometry, 
studied both synthetically (without coordinates) and analytically (with coordinates). Euclidean geometry is characterized 
most importantly by the Parallel Postulate that through a point not on a given line there is exactly one parallel line. 
(Spherical geometry, in contrast, has no parallel lines.) 
 
During high school, students begin to formalize their geometry experiences from elementary and middle school, using 
more precise definitions and developing careful proofs. Later in college some students develop Euclidean and other 
geometries carefully from a small set of axioms.  
 
The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric 
transformation. Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of 
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which are here assumed to preserve distance and angles (and therefore shapes generally). Reflections and rotations 
each explain a particular type of symmetry, and the symmetries of an object offer insight into its attributes—as when the 
reflective symmetry of an isosceles triangle assures that its base angles are congruent. 
 
In the approach taken here, two geometric figures are defined to be congruent if there is a sequence of rigid motions that 
carries one onto the other. This is the principle of superposition. For triangles, congruence means the equality of all 
corresponding pairs of sides and all corresponding pairs of angles. During the middle grades, through experiences 
drawing triangles from given conditions, students notice ways to specify enough measures in a triangle to ensure that all 
triangles drawn with those measures are congruent. Once these triangle congruence criteria (ASA, SAS, and SSS) are 
established using rigid motions, they can be used to prove theorems about triangles, quadrilaterals, and other geometric 
figures. 
 
Similarity transformations (rigid motions followed by dilations) define similarity in the same way that rigid motions define 
congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor" developed in the middle grades. 
These transformations lead to the criterion for triangle similarity that two pairs of corresponding angles are congruent. 
 
The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the 
Pythagorean Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is 
generalized to nonright triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle 
congruence criteria for the cases where three pieces of information suffice to completely solve a triangle. Furthermore, 
these laws yield two possible solutions in the ambiguous case, illustrating that Side-Side-Angle is not a congruence 
criterion. 
 
Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as 
the number line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of 
numbers with locations in two dimensions. This correspondence between numerical coordinates and geometric points 
allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a 
geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by 
equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof. Geometric 
transformations of the graphs of equations correspond to algebraic changes in their equations. 
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Dynamic geometry environments provide students with experimental and modeling tools that allow them to investigate 
geometric phenomena in much the same way as computer algebra systems allow them to experiment with algebraic 
phenomena. 
 
Connections to Equations 
The correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to 
geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for 
doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a 
tool for geometric understanding, modeling, and proof. 
 

Congruence (GCO) Experiment with transformations in the plane 

 Understand congruence in terms of rigid motions 

 Prove geometric theorems 

 Make geometric constructions 

  

Similarity, Right Triangles, and Trigonometry 

(GSRT) 

Understand similarity in terms of similarity transformations 

 Prove theorems involving similarity 

 Define trigonometric ratios and solve problems involving 
right triangles 

 Apply trigonometry to general triangles 
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Circles (GC) Understand and apply theorems about circles 

 Find arc lengths and areas of sectors of circles 

  

Expressing Geometric Properties with 

Equations (GGPE) 

Translate between the geometric description and the 
equation for a conic section 

 Use coordinates to prove simple geometric theorems 
algebraically 

  

Geometric Measurement and Dimension 

(GGMD) 

Explain volume formulas and use them to solve problems 

 Visualize relationships between two dimensional and three-
dimensional objects 

  

Modeling with Geometry (GMG) Apply geometric concepts in modeling situations 

 
 

Statistics and Probability 
Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if 
the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for 
describing variability in data and for making informed decisions that take it into account. 
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Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. 
Quantitative data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of 
a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a 
statistic measuring center (such as mean or median) and a statistic measuring spread (such as standard deviation or 
interquartile range). Different distributions can be compared numerically using these statistics or compared visually using 
plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots 
to use, and what the results of a comparison might mean, depend on the question to be investigated and the real-life 
actions to be taken. 
 
Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a 
population makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, 
randomly assigning individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A 
statistically significant outcome is one that is unlikely to be due to chance alone, and this can be evaluated only under the 
condition of randomness. The conditions under which data are collected are important in drawing conclusions from the 
data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study design, 
how the data were gathered, and the analyses employed as well as the data summaries and the conclusions drawn. 
 
Random processes can be described mathematically by using a probability model a list or description of the possible 
outcomes (the sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a 
number cube, or drawing a card, it might be reasonable to assume various outcomes are equally likely. In a probability 
model, sample points represent outcomes and combine to make up events; probabilities of events can be computed by 
applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an understanding of independence 
and conditional probability, which can be approached through the analysis of two-way tables. 
 
Technology plays an important role in statistics and probability by making it possible to generate plots, regression 
functions, and correlation coefficients, and to simulate many possible outcomes in a short amount of time. 
 
Connections to Functions and Modeling  
Functions may be used to describe data; if the data suggest a linear relationship, the relationship can be modeled with a 
regression line, and its strength and direction can be expressed through a correlation coefficient. 
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Interpreting Categorical and Quantitative Data 

(SID) 

Summarize, represent, and interpret data on a single count 
or measurement variable 

 Summarize, represent, and interpret data on two 
categorical and quantitative variables 

 Interpret linear models 

  

Making Inferences and Justifying Conclusions 

(SIC) 

Understand and evaluate random processes underlying 
statistical experiments 

 Make inferences and justify conclusions from sample 
surveys, experiments and observational studies 

  

Conditional Probability and the Rules of 

Probability (SCP) 

Understand independence and conditional probability and 
use them to interpret data 

 Use the rules of probability to compute probabilities of 
compound events in a uniform probability model 

  

Using Probability to Make Decisions (SMD) Calculate expected values and use them to solve problems 

 Use probability to evaluate outcomes of decisions 
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Grade Level/ 
Content Area 

         Alternate K-PREP Aligned to KCAS for 
Mathematics 

KCAS Standard 

HS 
Mathematics 

Grade 10 
 

M-HS.1 
 
Choose and interpret the scale and the origin in graphs 
and data displays.   

(NQ1) 
 
Use units as a way to understand problems and to 
guide the solution of multi-step problems; choose and 
interpret units consistently in formulas; choose and 
interpret the scale and the origin in graphs and data 
displays. 

 M-HS.2 
 
Represent data on the real number line using 
histograms and dot plots.   

(SID 1) 
 
Represent data with plots on the real number line (dot 
plots, histograms and box plots). 

 M-HS.3 
 
Use statistics appropriate to the shape of the data 
distribution to compare center (median, mean) of two or 
more different data sets. 

(SID 2) 
 
Use statistics appropriate to the shape of the data 
distribution to compare center (median, mean) and 
spread (interquartile range, standard deviation) of two 
or more different data sets. 

 M-HS.4 
 
When given equations using two or more variables, 
graph their relationship on a coordinate axes.   

(ACED 2) 
 
Create equations in two or more variables to represent 
relationships between quantities; graph equations on 
coordinate axes with labels and scales. 
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 M-HS.5 
 
Solve linear equations and inequalities in one variable.   

(AREI 3) 
 
Solve linear equations and inequalities in one variable, 
including equations with coefficients represented by 
letters. 

 M-HS.6 
 
Use geometric shapes and their properties to describe 
objects.   

(GMG 1) 
 
Use geometric shapes, their measures and their 
properties to describe objects (e.g., modeling a tree 
trunk or a human torso as a cylinder). 


